
Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Practical Software Requirements: Engineering and Management 
 

Karl E. Wiegers 
 

8/15/98 
 

Table of Contents 
 

Part 1. Software Requirements:  What and Why .............................................................................3 
Chapter 1. The Essential Software Requirement (5000 words)...................................................3 

Objectives of This Book ..........................................................................................................3 
When Bad Requirements Happen to Nice People ...................................................................3 
Every Project Needs Requirements .........................................................................................3 
Software Requirements Defined ..............................................................................................4 
Benefits Achievable from a High-Quality Requirements Process...........................................4 
Characteristics of Excellent Requirements Specifications ......................................................4 

Chapter 2. Requirements from the Customer’s Perspective (3000 words)..................................5 
Who is the Customer?..............................................................................................................5 
The Customer-Development Partnership.................................................................................5 
Nonfunctional Requirements ...................................................................................................6 
Punctual Precision, or Deferred Decisions? ............................................................................6 
What About Sign-Off?.............................................................................................................6 

Chapter 3. Good Practices for Requirements Development (4500 words)..................................6 
Requirements Engineering versus Requirements Management ..............................................6 
Requirements Development Good Practices ...........................................................................7 

Chapter 4. Improving the Requirements Process (5000 words) ..................................................7 
Current Requirements Practices Self-Assessment ...................................................................7 
Key Requirements Process Components .................................................................................7 
Impact of the Requirements Processes on Other Stakeholders................................................7 
Gaining Commitment to Change .............................................................................................7 
Building a Process Improvement Roadmap.............................................................................8 

Chapter 5. Risk Management and Software Requirements (3500 words)...................................8 
Know Your Enemy: Software Risk Management ...................................................................8 
Typical Requirements Risks ....................................................................................................8 
Risk Management Planning .....................................................................................................8 

Part 2. Software Requirements Engineering....................................................................................8 
Chapter 6. Establishing Project Scope (3000 words) ..................................................................8 

Defining the Vision..................................................................................................................8 
Keeping the Scope in Focus.....................................................................................................8 
The Context Diagram...............................................................................................................8 

Chapter 7. Finding the Voice of the Customer (3000 words)......................................................9 
Where Do Requirements Come From?....................................................................................9 
User Classes .............................................................................................................................9 
Identifying Suitable User Representatives...............................................................................9 
The Product Champion ............................................................................................................9 

Chapter 8. Hearing the Voice of the Customer (5000 words) ...................................................10 
Requirements Gathering Techniques.....................................................................................10 
Usage Scenarios and Use Cases.............................................................................................10 
Use Cases and Software Functional Requirements ...............................................................10 
Use Case Identification and Elaboration ...............................................................................10 
Documenting Use Cases ........................................................................................................11 

Chapter 9. Capturing the Requirements (5000 words) ..............................................................11 



Practical Software Requirements: Engineering and Management Outline Page 2 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

The Need for Multiple Views ................................................................................................11 
The Software Requirements Specification ............................................................................11 
Guidelines for Writing Requirements....................................................................................11 

Chapter 10. A Picture is Worth 1024 Words (5000 words).......................................................11 
Data Flow Diagram................................................................................................................12 
Entity-Relationship Diagram .................................................................................................12 
State-Transition Diagram.......................................................................................................12 
Dialog Map ............................................................................................................................12 
Object Class Model................................................................................................................12 

Chapter 11. Software Quality Attributes (2500 words).............................................................12 
Nonfunctional Requirements .................................................................................................12 
Quality Attributes ..................................................................................................................12 
Defining Quality Attributes ...................................................................................................12 

Chapter 12. Risk Reduction Through Prototyping (3000 words)..............................................13 
Prototyping:  What and Why .................................................................................................13 
Prototyping and Risk .............................................................................................................13 
Horizontal and Vertical Prototypes........................................................................................13 
Throwaway and Evolutionary Prototypes..............................................................................13 
Prototyping Tools ..................................................................................................................14 
Paper Prototyping ..................................................................................................................14 
Evaluating Prototypes ............................................................................................................14 

Chapter 13. Setting Requirements Priorities (2500 words) .......................................................14 
Why Prioritize Requirements?...............................................................................................14 
Games People Play With Priorities........................................................................................14 
Prioritizing Based on Value, Cost, and Risk .........................................................................14 

Chapter 14. Validating the Requirements  (4500 words) ..........................................................15 
Reviewing the Requirements .................................................................................................15 
Testing the Requirements ......................................................................................................15 

Chapter 15. Beyond Requirements Development (2000 words) ...............................................16 
From Requirements to Code ..................................................................................................16 
Requirements-Based Testing .................................................................................................16 

Part 3. Software Requirements Management.................................................................................16 
Chapter 16. Requirements Management Principles and Practices (4000 words) ......................16 

Principles and Goals of Requirements Management .............................................................16 
Practices for Requirements Management ..............................................................................16 
The Requirements Baseline ...................................................................................................16 
Measuring Change Activity ...................................................................................................17 
Measuring Requirements Management Effort.......................................................................17 
Tracking Requirements Status ...............................................................................................17 
Version Control of Requirements Specifications ..................................................................17 

Chapter 17. Managing the Change Backlog (4000 words)........................................................17 
The Threat of Scope Creep ....................................................................................................17 
The Change Control Process..................................................................................................17 
The Change Control Board ....................................................................................................17 

Chapter 18. Requirements Change Impact Analysis (2000 words)...........................................18 
Change Isn’t Free...................................................................................................................18 
Impact Analysis Checklist .....................................................................................................18 
Impact Analysis Worksheet ...................................................................................................18 

Chapter 19. Requirements Traceability (2000 words)...............................................................18 
Tracing Requirements Through Development.......................................................................18 
Tracking Interrelated Requirements ......................................................................................18 

Chapter 20. Tools for Requirements Management (2000 words) .............................................18 
Appendix A: Current Requirements Practice Self-Assessment (1500 words) ..............................19 
Appendix B:  Solving Requirements Problems (4000 words).......................................................19 



Practical Software Requirements: Engineering and Management Outline Page 3 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

 

Part 1. Software Requirements:  What and Why 

Chapter 1. The Essential Software Requirement (5000 words) 

Objectives of This Book 

The purpose of the book is to help the reader learn about, and be able to apply, 
effective techniques for the requirements engineering and management activities in 
his or her organization. Several specific and tangible benefits the reader can achieve 
by applying the principles and practices described in the book are presented in this 
section. 

Some Caveats 

It can be difficult to begin applying new ways of working, because the day-to-day 
project pressures do not abate while we try to make long-term investments in 
better processes. It can also be tempting to try to apply a variety of new 
techniques at once, without carefully considering whether they are appropriate for 
the problems at hand. This book is intended to provide readers with a more robust 
tool box of techniques, which can be applied to many, but probably not all, of the 
requirements-related problems they encounter. 
 
This is not a comprehensive treatise of all that is known about development of 
software requirements. The approaches described here are not methodology-
specific, but rather represent techniques that are well established (if not always 
applied) in the software industry. There are no magic solutions to your software 
requirements problems here, just descriptions of sound practices that have worked 
for others. 

Case Studies 

The requirements-related techniques and project work products described in this 
book will be illustrated with examples drawn primarily from two case studies. 
One case study is a medium-sized information system called the chemical 
tracking system. Don’t worry, you don’t need to know anything about chemistry, 
but this is a nice, real project example for illustrating requirements practices. The 
other case study is a Web development project to create a website with which 
users can make airline reservations and perform related activities. 

When Bad Requirements Happen to Nice People 

Several of the problems a development organization or its customers can encounter 
because of inadequate requirements engineering or requirements management are 
described. Requirements-related risks and how to manage them are addressed more 
fully in Chapter 4. 

Every Project Needs Requirements 

All projects, even those written for a single user, need to have some attention paid to 
requirements. Even products for which there is no apparent customer, such as utilities 
used by a development group, should have their needs identified. Developers who 



Practical Software Requirements: Engineering and Management Outline Page 4 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

have worked on both software written for in-house use and that which is sold 
understand the need for emphasizing requirements in both situations. 

Software Requirements Defined 

Several definitions of software requirements are presented. The most common 
emphasis in such definitions is on describing, as fully as possible, the expected 
external behavior of the software system. Requirements do not include design details, 
implementation details, project planning information, or testing information. 

Three Levels of Requirements 

Three levels of requirements are delineated:  business requirements (captured in 
project vision or statement of scope), the user view (captured in use cases) and the 
engineering view, used by development, testing, QA, and related functions 
(functional requirements, captured in the SRS). Some examples of each are 
provided. 

Requirements Terminology 

One of the problems with the software industry is the lack of common definitions 
for terms we use to describe aspects of our work. Confusion arises when we do 
not use adjectives in front of key words, like “requirements” or “prototype”, 
thereby conjuring different expectations and understanding among the listeners. 
Some key terms used in this book are defined here. 

Classes of Software Requirements 

Four classes of requirements are described: 
1. functional requirements (describe the behaviors the system must exhibit and 

the tasks it lets the user perform); 
2. nonfunctional requirements (including interfaces, standards, regulations, 

performance, quality attributes) 
3. inverse requirements (things the product must not do or permit); and  
4. known design and implementation constraints. 
 
Projects may also have other kinds of requirements, such as development 
environment requirements or implementation requirements for releasing a product 
and moving it into the support environment. These kinds of requirements are not 
discussed further in this book. 

Benefits Achievable from a High-Quality Requirements Process 

Effective requirements processes can reduce rework, reduce the expectation gap 
between what the user anticipates receiving and what the developer constructs, 
emphasize a collaborative approach to product development, save time by avoiding 
unnecessary functionality, minimize the adverse impact of requirements changes, 
reduce maintenance and support costs, and facilitate system testing. 

Characteristics of Excellent Requirements Specifications 

Eleven characteristics an excellent requirements specification (SRS) should have are 
described. Each requirement should be clear, complete, consistent, correct, feasible, 
modifiable, necessary, prioritized, traceable, unambiguous, verifiable. No requirements 
specification is likely to ever exhibit all of these desirable characteristics for every 



Practical Software Requirements: Engineering and Management Outline Page 5 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

requirement statement, but writing and reviewing requirements with these 
characteristics in mind will lead to improved requirements documents. 

Chapter 2. Requirements from the Customer’s Perspective (3000 words) 

Who is the Customer? 

The “customer” is sometimes thought of as the person or organization that is 
acquiring or paying for the software project. In this book, I use the terms “customer”, 
“user”, and “end user” interchangeably, since requirements must be gathered from 
people who will actually use the product (end users). The risk of gathering incorrect 
requirements increases if the source of voice-of-the-customer (VOC) input is farther 
removed from actual hands-on end users. Beware of listening to the loudest voice you 
hear, if it doesn’t actually represent end users, but rather some other project 
stakeholder, such as a funding authority, senior business manager, or someone with a 
political agenda. 

The Customer-Development Partnership 

If the software doesn’t allow customers to do their job, and if it doesn’t satisfy their 
implicit, nonfunctional expectations, everyone will be unhappy. The software 
development business is at least as much about communication as it is about 
computing. Excellent requirements demand effective two-way communication and 
collaboration between requirements analysts and customers. 
 
Too often, the relationship between development and customers (or customer 
surrogates, such as marketing) becomes adversarial. We can only succeed on such a 
collaborative effort when all parties involved know what they need to be successful, 
and when they understand and respect what their collaborators need to be successful. 
This section addresses some things customers and developers can expect from each 
other as part of the requirements definition and management processes. These points 
may be presented in the form of a “Software Customers’ Bill of Rights” and a 
“Software Requirements Customers Bill of Responsibilities”. 

What Customers Can Expect from Developers 

Customers can expect the developers to speak the language of their business when 
discussing requirements; they should not be expected to master computer jargon. 
However, they should not expect developers to become domain experts and 
understand the nuances and implicit aspects of the customer’s application domain. 
Customers should rely on developers to present them with implementation 
alternatives and with feasibility limitations. Customers should expect developers 
to collect, organize, and sift through the information provided to them to structure 
the requirements statements precisely and clearly. 

What Developers Can Expect from Customers 

Developers expect customers to be willing to educate them on application domain 
concepts and terminology. Developers expect customers to be as specific and 
precise as possible when providing input on requirements, and be able to spend 
time iteratively clarifying and fleshing out requirements. Developers must rely on 
customers to make timely decisions when requested to do so. Developers also can 
expect customers to take the time to review requirements documents, and to set 
priorities for product features. 



Practical Software Requirements: Engineering and Management Outline Page 6 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Nonfunctional Requirements 

Users typically focus on functional requirements: the things the software will let you 
do. In addition, though, users often have implicit expectations about certain 
behavioral and less tangible aspects of the product: quality attributes. As a 
consequence, they might be more likely to be missed or overlooked. These 
nonfunctional requirements can be difficult to define, yet they often make the 
difference between a product that simply does what it is supposed to, and a product 
that truly delivers customer delight. If we don’t think about and discuss these quality 
characteristics early on, then we’re just lucky if the product exhibits the 
characteristics the users implicitly expect. Chapter 11 discusses the kinds of quality 
attributes, ways to collect them, and ways to document them in more detail. 

Punctual Precision, or Deferred Decisions? 

Customers sometimes are comfortable hiding behind ambiguous requirements, as that 
appears to give them the perennial opportunity to change their minds, or to reinterpret 
what the requirements analyst thought he heard them say. However, these ambiguities 
must be resolved at some point during development, and it is most effective if 
customers help make those decisions, rather than relying on developers to guess 
correctly. Developers don’t normally understand the application domain and user 
needs as thoroughly as a customer representative, and consequently won’t always 
make the decisions the customers would prefer. Telepathy is not a sound technical 
foundation for a software development project. 
 
Both customers and developers must avoid the temptation to hide behind ambiguity 
and vagueness in the requirements.. It’s fine to include TBD (to be determined) 
markers in the requirements specification, indicating that additional research or 
thinking is needed. However, it’s highly risky to proceed with design and 
implementation when TBDs remain in the requirements section being implemented. 

What About Sign-Off? 

Though not used universally, the concept of signing off on a requirements document is 
discussed. Sign-off is most commonly associated with baselining the requirements 
agreement at a specified point in time. All participants must know what sign-off 
means. Is it a meaningless ritual that can be ignored in the future when convenient? 
Or is it an agreement that the document being signed represents our best 
understanding today, and future changes can be made by following a defined change 
process and renegotiating resources and commitments? 

Chapter 3. Good Practices for Requirements Development (4500 words) 

Requirements Engineering versus Requirements Management 

Some authors call the entire discipline of software requirements “requirements 
engineering,” while others call the whole thing “requirements management.” I find it 
useful to separate the two subdisciplines. Requirements engineering includes: 
eliciting needs from users representing all user classes; understanding actual user 
tasks and objectives; understanding the relative importance of quality attributes; 
negotiating implementation priorities; and translating user needs into written 
specifications and models. This is where the transition to requirements management 
takes place. 
 
Requirements management starts after the requirements are collected, but before the 
developers have agreed to accept them and build them into a product. Customer 



Practical Software Requirements: Engineering and Management Outline Page 7 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

acceptance is only half of the equation to approve requirements. Requirements 
management includes: reviewing requirements before accepting them; defining the 
requirements baseline and controlling changes to it; keeping project plans current 
with the requirements; and tracking requirements stability. You can begin applying 
many requirements management practices immediately, no matter what life cycle 
stage your project is in. 

Requirements Development Good Practices 

Approximately 45 good practices for requirements engineering and management are 
stated and briefly described, along with the kinds of problems they are best suited for 
addressing. References are provided to parts of this book or other sources containing 
additional detail. These practices are organized into the following sections:  training; 
gathering requirements; analyzing requirements; documenting requirements; 
validating; managing requirements; and project management. 

Chapter 4. Improving the Requirements Process (5000 words) 

Current Requirements Practices Self-Assessment 

The reader is referred to Appendix A, which contains a questionnaire she can use to 
calibrate her organization’s current practices around requirements development. 
Based on the responses to this self-assessment, the reader can choose which portions 
of the book are most pertinent as a starting point. 

Key Requirements Process Components 

Some of the elements of an organization’s software process that enable effective and 
repeatable requirements development are described here. Examples of many of these 
work products and procedures are provided elsewhere in the book. Key requirements 
engineering process components include :  use case template, SRS template, 
requirements specification guidance, procedure for requirements specification, 
procedure for interface specification, example SRS and interface specification, 
requirements allocation guidance, SRS inspection checklist. Key requirements 
management process components include:  requirements management policy, 
requirements change procedure, change control board operation procedure, impact 
analysis checklist and worksheet. 

Impact of the Requirements Processes on Other Stakeholders 

Changing your requirements process means the interfaces you present to other 
stakeholder communities for your project may also change. Various stakeholders are 
participants in the requirements process, and so their roles in, and contributions to, 
the process may also change. Expect some resistance to these process changes, since 
no one likes to be forced out of their comfort zone. For example, a requirements 
change control process may well be viewed as a barrier thrown up by development to 
make it harder to get changes made. In fact, though, it should be used to provide 
structure and order to the change process, and to permit good business decisions to be 
made by better informed people. Be prepared to educate stakeholders about why the 
changes are being made, and how the changes will affect them. 

Gaining Commitment to Change 

Tips are provided for how to convince managers, customers, marketing, and other 
stakeholders of the need for documenting project software requirements and for 
improving your current requirements processes. Without requirements, how do we 
know when we’re done? The cost to fix a defect increases rapidly the later it is found 



Practical Software Requirements: Engineering and Management Outline Page 8 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

in the development process. Any development organization can probably find many 
examples of requirement-based problems from previous projects to use as justification 
for investing in improved requirements approaches. The potential return on investment 
from improved requirements engineering and management is discussed. 

Building a Process Improvement Roadmap 

An approach is suggested for developing a roadmap for implementing improved 
requirements practices, based on the requirements practices self-assessment 
questionnaire and techniques that might address the problems revealed. The 
importance of developing a risk management plan for your requirements process 
improvement activities is called out. 

Chapter 5. Risk Management and Software Requirements (3500 words) 

Know Your Enemy: Software Risk Management  

Risk management provides a standard mechanism for identifying risk factors, 
documenting them, evaluating their potential severity, and identifying mechanisms 
for mitigating those risks. This section provides a concise presentation of risk 
management, with examples of how it can be applied to requirements topics. 

Typical Requirements Risks 

Some of the common project risk factors pertaining to software requirements are 
itemized here, with references to sources of additional detail. 

Risk Management Planning 

A project’s risk management plan should include any risk factors pertaining to 
requirements. Guidance is provided on how to go about identifying project risk 
factors, evaluating their severity, documenting them, and controlling them. 
 
Case Study:  Sample requirements-related risk statements from one or more case 
study projects are presented. 

Part 2. Software Requirements Engineering 

Chapter 6. Establishing Project Scope (3000 words) 

Defining the Vision 

The scope of the project or product must be defined very early. The project’s vision 
and statement of scope incorporate the high-level business objectives for the product. 
All use cases and functional requirements developed must align with, and enable 
achievement of, these business requirements. The vision helps get all project 
participants working with a common understanding of the outcome. A template for 
the statement of scope is presented. 

Keeping the Scope in Focus 

The project’s vision and statement of scope provide the reference frame to be used for 
assessing whether proposed requirements (or changes to requirements) are 
appropriately included in the project or not. 

The Context Diagram 



Practical Software Requirements: Engineering and Management Outline Page 9 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

The context diagram defines the interfaces between the either the problem being 
addressed, or the system being developed, and the outside world. The nature of 
information and material flows across these interfaces can also be defined. It is 
essential to define this boundary between the current problem and the rest of the 
world as part of the scope definition of the project. 
 
Case Study:  statement of scope for chemical tracking system; statement of scope for 
website 

Chapter 7. Finding the Voice of the Customer (3000 words) 

Where Do Requirements Come From? 

Eight typical sources of software requirements are identified: 
1. documents describing current or competing products 
2. system-level requirements for a product containing both hardware and software 
3. problem reports and change requests for a current system being replaced 
4. interviews and discussions with representative users 
5. marketing surveys and user questionnaires 
6. observations of potential users of the new product as they do their current job or 

use an existing system 
7. feedback from evaluation of prototypes 
8. task analysis of the objectives users need to accomplish with the new product 

User Classes 

User classes represent distinct groups of users of a product. They may vary in 
frequency of use, features used, experience and education levels, or security privilege 
levels. It’s important to identify and characterize the different user classes for a 
product early in the project, and to attempt to gather requirements from 
representatives of each user class.  
 
Case Study:  user classes for chemical tracking system, example of how to document 
user classes and their characteristics; user classes from airline reservation website 
project 

Identifying Suitable User Representatives 

User representatives need to be found for projects in different situations:  internal 
information systems (IS), commercial software, integrated systems, web 
development, contracted software. While it’s usually easiest for IS development, reps 
can often be acquired to contribute to the other kinds of projects. Use people from 
current beta testing sites, build on existing customer relationships, develop focus 
groups of current users, or assess the demographics of current visitors to your web 
site to locate candidate representatives. 

The Product Champion 

Product champions are individuals representing discrete user classes who serve as the 
primary interface between customers and developers. The product champion 
approach provides a way to get the voice of the customer as close as possible to the 
ear of the developer. The responsibilities expected of the champions are stated, as are 
ways to manage customer involvement on larger projects or geographically separated 
user communities with multiple champions representing diverse user classes. The 
focus is on collecting, documenting, and understanding the user’s business 
requirements that will must be addressed by the software product.  



Practical Software Requirements: Engineering and Management Outline Page 10 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

 
Case Study:  identifying product champions from chemical tracking system; 
relationship among them; product champion expectations and sample dialog with 
champions about agreeing on what role they’ll play 

Chapter 8. Hearing the Voice of the Customer (5000 words) 

Requirements Gathering Techniques 

Several techniques for gathering requirements from customer representatives are 
presented, including interviews, observation, workflow analysis, and questionnaires. 
Joint Application Design (JAD) sessions have been widely used to develop software 
requirements using facilitated sessions involving customer and development 
representatives. Examples of JAD-type sessions will be described in the case studies 
in this chapter. 
 
As the requirements analyst gathers the voice of the customer, he must classify the 
many bits of information collected into several categories:  business requirements, 
use cases, functional requirements, business rules, possible solutions, quality 
attributes, or extraneous information. 

Usage Scenarios and Use Cases 

Usage scenarios represent specific ways we anticipate the customers will use the 
product. Use cases are an abstraction of specific scenarios, which encapsulate the 
kinds of tasks users will expect to be able to accomplish with the product. Each use 
case should encompass the normal course behavior of the task, alternative course 
paths and exception conditions. Use cases are developed early in the project’s life, 
and they are used to derive functional requirements and test cases. 
 
Case Study:  several sample use cases from the chemical tracking system and from 
the web development project 

Use Cases and Software Functional Requirements 

Use cases represent the high-level view of requirements: the user view, or the 
business requirements. The software functional requirements are derived from these 
business requirements; they constitute the engineering (development, testing) view of 
the requirements. The use case approach makes it easier to separate these two views 
than do previous requirements gathering and analysis techniques. Functional 
requirements should be traced back to individual use cases or other VOC input 
sources. 
 
Case Study:  example of a use case and corresponding functional requirements from 
the chemical tracking system 

Use Case Identification and Elaboration 

A case study is used to illustrate how use cases can be identified in facilitated 
workshops (like JAD sessions) involving an analyst and several customer 
representatives. Some sample use cases are shown. The benefits of the use case 
approach are described, compared to previous techniques that focus more on the 
product’s features than on what users need to be able to do with the product. Watch 
out for requirements that users so intuitively expect to be present that they don’t 
express those needs. 
 



Practical Software Requirements: Engineering and Management Outline Page 11 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Case Study:  scenario of how a use case workshop from the chemical tracking system 
went 

Documenting Use Cases  

A suggested template is provided for documenting individual use cases, with 
guidance for how to use it. The template includes a description of the normal course 
of events that characterize the execution of the use case, as well as alternative courses 
and exceptions that can arise. There is a many-to-many relationship among use cases 
and functional requirements. Three possible ways to relate the use cases and the 
corresponding functional requirements are presented. 
 
Case Study:  sample use cases from the chemical tracking system and from the web 
development project are documented using the template 

Chapter 9. Capturing the Requirements (5000 words) 

The Need for Multiple Views 

According to requirements authority Alan Davis, no single view of the requirements 
provides adequate understanding. We need to use a variety of textual and graphical 
representations of the requirements to help us identify inconsistencies, ambiguities, 
errors, and omissions. Guidance is provided as to how to determine which views and 
representations are most valuable for different situations. 

The Software Requirements Specification 

Despite its shortcomings, structured natural language remains the most practical way 
of documenting requirements for most software products. An adaptation of the IEEE 
SRS template as a way to collect requirements information, and an interpretation of 
the IEEE 830 standard (including its shortcomings) are presented.  
 
Case Study: sample contents for the various SRS sections are presented.  

Guidelines for Writing Requirements 

Suggested approaches for how to write requirements statements are presented. The 
suitable level of requirements granularity, schemes for uniquely labeling each 
requirement, and examples of good and bad requirements statements are included. 
Ways to represent sets of similar requirements in tables or list form are illustrated. 
The notion of discretely testable requirements as a way to judge the appropriate level 
of granularity is presented, with examples. 

Chapter 10. A Picture is Worth 1024 Words (5000 words) 

Graphical views of the requirements include data flow diagrams, entity-relationship 
models, state-transition diagrams, dialog maps, and object class models. These 
models are useful both for elaborating and exploring the requirements, and for 
designing solutions. This book does not go into detail on some of the modeling 
techniques that are thoroughly treated in other sources, but this chapter contains short 
presentations of the major methods and some examples. The reader is provided with 
an indication as to what kinds of problems might be modeled most appropriately with 
one of the various methods, with pointers to selected resources from which they can 
learn more. 
 
Case Study:  each of these models is illustrated with a simple example from the 
chemical tracking system 



Practical Software Requirements: Engineering and Management Outline Page 12 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Data Flow Diagram 

The data flow diagram is a fundamental tool of structured analysis. It illustrates the 
major transformational processes of a system (physical or software), the data stores, 
and the flows of data or material among the processes and the stores. 

Entity-Relationship Diagram 

The entity-relationship diagram is a way to build a conceptual model of a system, 
representing physical or logical entities, their attributes, and relations among them. 

State-Transition Diagram 

The state-transition diagram depicts the various states the system can be in, and the 
allowed state changes and conditions under which each state change can take place. 

Dialog Map 

The dialog map is a tool for modeling a user interface architecture (conceptual or 
physical) at a high level of abstraction, such that the navigation links among dialog 
elements can be reviewed for correctness. The dialog map can be verified using the 
system test cases developed from use cases. By tracing the flow of execution of each 
test case, we can identify missing or incorrect requirements, correct errors in the 
dialog map itself, and refine the test cases. 
 
Case Study:  chemical tracking system dialog map and use of test cases to verify 
dialog map; dialog map for website; use of dialog maps in use case workshops to 
clarify requirements for a website 

Object Class Model 

Class models depict the relationships among the object classes that are identified 
during object-oriented analysis, as well as the functionality that can be performed on 
the data contained in those objects. 

Chapter 11. Software Quality Attributes (2500 words) 

Nonfunctional Requirements 

Beyond the functionality they contain, excellent software products display a set of 
quality characteristics that represent the most satisfactory balance of several 
competing attributes. Users will not generally express these nonfunctional needs 
spontaneously, so analysts must prompt the necessary user input to reach an 
understanding of these attributes so we can use them as design criteria. In the rush to 
please the customer, restraint should be used to provide solidly functional systems 
without unnecessary constraining attributes (such as unreasonable performance 
expectations) that drive up development cost while providing little additional value. 

Quality Attributes 

Definitions of about 25 such quality attributes are presented, as are tradeoffs that 
often have to be made between them. Some of these attributes are visible to the user; 
examples include correctness, performance, reliability, robustness, and usability. 
Other attributes are more important to developers, including maintainability, 
testability, understandability, and portability. 

Defining Quality Attributes 



Practical Software Requirements: Engineering and Management Outline Page 13 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

A technique for eliciting information on quality attributes from users is presented. 
Several examples are shown of how to document these quality attributes in a testable 
and measurable way for different kinds of projects. 
 
Case Study:  quality attributes for chemical tracking system (user view); quality 
attributes for a “graphics engine” application (developer view) 

Chapter 12. Risk Reduction Through Prototyping (3000 words) 

Prototyping:  What and Why 

A prototype is a partial implementation of a proposed new product. It can be used to 
clarify and complete the requirements, to explore design alternatives, and (if done by 
intent) to grow into the ultimate product. Examples are provided of how prototyping 
can help flesh out and refine requirements, and the discipline required to use rapid 
prototyping for this purpose. 

Prototyping and Risk 

Prototyping is normally considered to be a technique for reducing the risk of failure 
on a software project, where “failure” can be defined as either building the wrong 
product, or building the right product badly or late. However, prototyping introduces 
its own risks, the biggest being that a stakeholder will see a running prototype and 
conclude the product is nearly completed. Part of the problem arises because we don’t 
use adjectives in front of the work “prototype,” so different people have very 
different expectations about them., including pressure to deliver a throwaway 
prototype, and the temptation to keep adding new functionality such that a simple 
prototype evolves into something much more elaborate than necessary to meet the 
prototyping objectives. Expectation management with stakeholders is a part of 
successful prototyping. 

Horizontal and Vertical Prototypes 

The horizontal prototype is like a movie set, with false fronts of user interface screens 
displayed and some navigation operational, but little or no real functionality. These 
are sometimes called “mock-ups.” The vertical prototype, or “proof of concept,” 
implements a slice of application functionality and is used to determine whether a 
proposed architectural approach is sound. 

Throwaway and Evolutionary Prototypes 

A throwaway prototype is built to answer questions, resolve uncertainties, and 
improve requirements quality. It is specifically intended to be discarded after it has 
served its purpose. A risk is the temptation to keep adding more functionality to the 
throwaway prototype, “just to see what it will look like.” 
 
The evolutionary prototype is intended to provide a solid foundation for growing the 
product over time. These are designed and built very differently. More characteristics 
and usage of both kinds of prototype are presented. Evolutionary prototyping is a 
fundamental component of the spiral software development life cycle model and of 
some object-oriented development processes such as Objectory. The first increment 
of an evolutionary prototype can be thought of as a pilot release. Lessons will be 
learned from testing and initial evaluation, and the pilot may be backed out or 
extensively modified. Once the necessary adjustments have been made, development 
can proceed with the next iteration, on the way to eventual implementation of the full 
product. 



Practical Software Requirements: Engineering and Management Outline Page 14 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Prototyping Tools 

Several tools that can be used for prototyping are mentioned, including Visual Basic, 
commercial prototyping toolkits, scripting tools, and Web-based approaches using 
HTML.  

Paper Prototyping 

Simple, non-executable prototypes can be cheap, fast, and effective. They also 
provide a good way to deal with the risk that an evaluator of an executable 
throwaway prototype will conclude the product is nearly done. Ideas for, and 
references to excellent sources on, paper prototyping are presented. 

Evaluating Prototypes 

User evaluation of prototypes can be improved by creating a prototype evaluation 
script that guides the user through a sequence of tasks and asks specific questions to 
obtain the information the prototype is intended to collect. This is a valuable 
supplement to the more general evaluation invitation of, “Tell me how this looks to 
you.” It is easy for those evaluating a prototype that includes faked data to become 
distracted by the data and not focus on the structure and intent of the application as 
manifested in the prototype. 
 
Case study: sample prototype evaluation scripts for the chemical tracking system and 
website are provided 

Chapter 13. Setting Requirements Priorities (2500 words) 

Why Prioritize Requirements? 

Requirements priorities are necessary to permit project tradeoffs to be made as 
needed throughout the project. They can allow the project manager to adjust scope to 
fit the realities of schedule, budget, and staff restrictions, by dropping or delaying to a 
subsequent release lower priority functions when new, higher priority requirements 
are accepted or other project conditions change. Three levels of priority are 
recommended: required for release 1.0, required for subsequent release, would be 
nice to have some day. 

Games People Play With Priorities 

It’s often difficult to persuade customers to set priorities, if they know that low 
priority requirements will likely not be implemented. Some people have the attitude 
that priorities are unimportant, because if we wrote it in the SRS, we intend to build 
it. Even when priorities are set, there may be so many at high priority that in practice, 
the project manager really doesn’t have any degrees of freedom to work with. 

Prioritizing Based on Value, Cost, and Risk 

A simple scheme to help analysts evaluate the relative value, cost, and risk associated 
with each proposed requirement, feature, or use case is presented. This scheme is 
loosely derived from Quality Function Deployment concepts. The attractiveness of a 
feature is directly proportional to the value it provides, and inversely proportional to 
the cost and the technical risk of implementing it. Value includes both the benefit to 
the customer if the feature is present, and the penalty paid if it is not. Features having 
the highest risk-adjusted value/cost ratio should have the highest priority, all other 
things being equal (they aren’t, of course; some requirements are more equal than 
others). Some features are exempt from this analysis, because they simply must be 



Practical Software Requirements: Engineering and Management Outline Page 15 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

included regardless of the cost or impact. An example is a feature required for 
compliance with government regulations. 
 
Case Study:  example of how to establish priorities for selected features from the 
chemical tracking system 

Chapter 14. Validating the Requirements (4500 words) 

Reviewing the Requirements 

The importance of reviewing requirements documents early and often, formally and 
informally, is presented. Formal inspection of requirements documents is perhaps the 
highest leverage software quality practice available. Reviews are an excellent 
technique for identifying ambiguous requirements, and requirements that are not 
adequately testable, or are not clearly enough defined to be used as the basis for 
design, or are in fact design specifications themselves. 

Requirements Review Methods 

Both informal and formal reviews are important quality activities. specific 
techniques for having a group of the author’s peers search for defects in 
requirements specifications. An overview of the formal inspection process is 
presented, with guidance for how to apply them to requirements documents. A 
checklist of typical requirements defects is included. Appropriate participants for 
requirements reviews are described, and their roles defined. 

Requirements Review Tips and Traps 

Typical problems people encounter when attempting to review requirements are 
pointed out, such as excessively large review teams. Techniques are suggested for 
overcoming common requirements review problems, such as reviewing too late in 
the development process, dealing with very large documents, dealing with 
geographically separated review participants, and so on. 

Testing the Requirements 

Crystallizing the Vision With Test Cases 

Writing test cases forces one to state precisely the expected behavior of a 
software system under specific conditions. Hence, writing black-box functional 
test cases is a powerful technique for eliminating ambiguity and vagueness in 
requirements. The simple act of writing the test cases will reveal many flaws in 
the requirements. Having the customer representative team walk through the test 
cases with the analyst and developers is an excellent way to help these key 
stakeholders achieve a shared vision of the product’s expected behaviors.  

Deriving Test Cases from Use Cases 

Conceptual test cases can be derived very early in the project from the use cases. 
The test cases can be used to verify both textual requirements specifications and 
models, such as dialog maps. Such test cases, based on usage scenarios, can serve 
as the foundation for customer acceptance testing, in addition to comprehensive 
formal system testing. 

 



Practical Software Requirements: Engineering and Management Outline Page 16 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Case Study: Sample test cases derived from use cases for the chemical tracking 
system are shown, and the method by which they were used to find errors in both the 
requirements and the test cases themselves is described. 

Chapter 15. Beyond Requirements Development (2000 words) 

From Requirements to Code 

This chapter addresses the process of moving from requirements through the rest of 
development:  design, coding, testing. There is a gray area between requirements and 
design, but we want to keep our requirements documents as free as possible from 
implementation bias. The importance of, and techniques for, staying out of design 
during the requirements process are discussed. 
 
As developers work to implement requirements, they will encounter points of 
ambiguity and confusion that need to be resolved. Ideally, these can be taken back to 
the customers to provide additional details and make decisions. Any assumptions, 
questions, guesses, or interpretations the developer makes should be documented and 
reviewed with customer representatives if it is not possible to resolve such issues in 
real time. 

Requirements-Based Testing 

The need to develop system (black box, functional, behavioral) test cases against the 
requirements is presented. We have to make sure we’re testing the product against 
what the product was intended to do as documented in the requirements, not against 
what the design or code says. All requirements must have test cases mapped to them. 
Test progress can be measured in part by coverage of the requirements during testing.  

Part 3. Software Requirements Management 

Chapter 16. Requirements Management Principles and Practices (4000 words) 

Principles and Goals of Requirements Management  

Once gathered, documented, and reviewed, the requirements must be managed over 
time. The primary objectives of requirements management as presented in the 
Software Engineering Institute’s Software Capability Maturity Model are discussed. 
The CMM itself is not emphasized, and the somewhat stilted CMM terminology is 
“folksied up” to make it easier for normal people to understand. The primary 
emphasis of requirements management is on change management. 

Practices for Requirements Management 

Dealing with changing requirements consumes the bulk of the requirements 
management effort. Requirements may be added, modified, or deleted from the 
requirements specification over time. Requirements change practices, including impact 
analysis and the decision making process, are addressed in other chapters, as is the 
use of a requirements traceability matrix.  

The Requirements Baseline 

Requirements changes are made against a reference, baseline requirements 
agreement. Baselining is normally associated with approval of the requirements 
documents. The baseline is a snapshot of the requirements agreement at a specified 



Practical Software Requirements: Engineering and Management Outline Page 17 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

time. It represents the shared understanding that these requirements constitute our 
best description at this time, and that future modifications in the requirements 
documents can be made only through following a defined requirements change 
control procedure. 

Measuring Change Activity 

Measurement of change activity is a way to assess the stability of the requirements and 
identify process improvement opportunities to minimize the adverse impact of 
changes on the project.  

Measuring Requirements Management Effort 

Projects should track the effort they devote to requirements management activities. 
This provides visibility into whether the intended actions to manage the requirements 
over time are actually being performed. It also provides the opportunity to better plan 
the requirements management effort that should be budgeted for future projects. If we 
do not use historical data from previous projects to plan future projects, our estimates 
will forever be guesses. 

Tracking Requirements Status 

Another aspect of requirements management is to track the status of each requirement 
throughout development. This can be done with the help of a database or a 
commercially available requirements management tool. 

Version Control of Requirements Specifications 

A final technique for managing the requirements specification is to use configuration 
management tools and practices for version control. Ways to identify the various 
versions of the SRS are described. 

Chapter 17. Managing the Change Backlog (4000 words) 

The Threat of Scope Creep 

Controlling scope creep requires that every proposed new requirement be evaluated 
against the stated scope or vision of the product to see if it belongs in the product or 
not. To minimize the adverse impact of change on the project because of changing 
requirements, each project should follow a defined change control process. 

The Change Control Process 

Basic principles of change control of requirements as part of software configuration 
management are presented. The elements of an change control process are described, 
including a sample state transition diagram that describes the life cycle of a change 
request. Appropriate tools are described to support the process (remember, a tool is 
not a process), including the value of automated e-mail communications. Pointers to 
sources of appropriate tools are included. 

The Change Control Board 

The change (or configuration) control board (CCB) is a best practice for software 
development.This is the body of people, be it one individual or a diverse group, that 
is empowered to make binding decisions about which proposed requirements changes 
(and enhancements and defects) will be incorporated into the product. Its 
composition, roles, and operating principles are described. A sample operating 
procedure for a CCB is included. 



Practical Software Requirements: Engineering and Management Outline Page 18 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Chapter 18. Requirements Change Impact Analysis (2000 words) 

Change Isn’t Free 

The perception that changes are free leads to scope creep. Developers have 
responsibility to estimate the impact of proposed changes so appropriate, informed 
business decisions can be made. 

Impact Analysis Checklist 

An important part of responsible requirements management is to assess each 
proposed requirement change for its cost and impact on the project. This checklist 
poses many questions to help the person doing this assessment to identify all the work 
that might be associated with making the proposed change. 

Impact Analysis Worksheet 

This worksheet lets the person assessing the impact of a proposed requirements 
change estimate the amount of labor that will be involved for the tasks identified with 
making the change. By performing such an analysis, we can do a much better job of 
judging the consequences of incorporating a proposed change, such that the impact 
on the project’s schedule and cost are more accurately projected. 
 
Case Study: an example of how a requirements change request for the chemical 
tracking system is proposed and handled is presented 

Chapter 19. Requirements Traceability (2000 words) 

Tracing Requirements Through Development 

Requirements traceability involves both linking each software requirement to its 
source (system requirement, use case, specific VOC source), and to downstream 
development life cycle deliverables:  design elements, source code and procedures, 
test cases. Several ways to construct a requirements traceability matrix (RTM) and 
several benefits of the RTM are discussed. 

Tracking Interrelated Requirements 

Another form of requirements traceability is to keep track of interconnections among 
individual requirements. This information helps identify the propagation of change 
that can result when a specific requirement is deleted or modified. It also helps relate 
dependencies among multiple requirements. 
 
Case Study: a portion of a sample requirements traceability matrix for the chemical 
tracking system is shown 

Chapter 20. Tools for Requirements Management (2000 words) 

Some commercial tools that are available for assisting with the requirements 
management process are described. Benefits and caveats of the tools are presented. 
Pointers to sources of additional information about the tools are included (e.g., Web 
URLs, if we think they’re stable enough to publish). As tool availability and 
functionality change rapidly, this chapter will not go into great detail on specific 
currently available tools. The general capabilities of requirements management tools 
will be emphasized instead. 



Practical Software Requirements: Engineering and Management Outline Page 19 

Copyright  1998 by Karl E. Wiegers, All Rights Reserved 

Appendix A: Current Requirements Practice Self-Assessment (1500 words) 
This questionnaire addresses 20 software requirements engineering and management 
practices, and it offers a scale for the reader to evaluate his current organization 
practices. Pointers are provided to other parts of the book to get help on specific 
weaknesses identified by the questionnaire. 

Appendix B:  Solving Requirements Problems (4000 words) 
The appendix contains a table of common requirements engineering and management 
problems that software projects might encounter. These are drawn from small group 
discussions in the many classes I have taught on “In Search of Excellent 
Requirements.” Possible solutions to the problems are presented, in the form of the 
best practices described earlier in the book. 


